講座編號:jz-yjsb-2023-y009
講座題目:基于患者特征信息的手術室調度魯棒優化方法
主講人:章宇
講座時間:2023年5月26日 14:00
騰訊會議:850 229 101
參加對象:電商與物流學院全體教師、研究生
主辦單位:電商與物流學院、研究生院
主講人簡介:
章宇,西南財經大學大數據研究院教授、博導。東北大學本科、直博,新加坡國立大學聯合培養博士。曾赴新加坡國立大學任研究員,并多次受邀訪問。主要從事物流、供應鏈、交通、醫療運營管理的魯棒優化與決策研究。主持和參與國家自然科學基金項目3項。在Operations Research,Mathematical Programming,Production and Operations Management, INFORMS Journal on Computing等期刊發表學術論文10余篇。獲中國管理科學與工程學會優秀博士學位論文獎、Omega期刊最佳論文獎,單篇論文入選ESI高被引論文。受邀擔任Operations Research,INFORMS Journal on Computing,Transportation Science等期刊審稿人,任中國運籌學會決策科學分會理事。
主講內容:
Patient features such as gender, age, and underlying disease are crucial to improving the model fidelity of surgery duration. In this paper, we study a robust surgery scheduling problem augmented by patient feature segmentation. We focus on the surgery-to-operating room allocations for elective patients and future emergencies. Using feature data, we classify patients into different types using machine learning methods and characterize the uncertain surgery duration via a feature-based cluster-wise ambiguity set. We propose a feature-driven adaptive robust optimization model that minimizes an overtime riskiness index, which helps mitigate both the magnitude and probability of working overtime. The model can be reformulated as a second-order conic programming problem. From the reformulation, we find that minimizing the overtime riskiness index is equivalent to minimizing a Fano factor. This makes our robust optimization model easily interpretable to healthcare practitioners. To efficiently solve the problem, we develop a branch-and-cut algorithm and introduce symmetry-breaking constraints. Numerical experiments demonstrate that our model outperforms benchmark models in a variety of performance metrics.