講座編號:jz-yjsb-2020-y013
講座題目:Solutions of the Minimal Surface Equation and of the Monge-Ampere Equation near Infinity
主 講 人:韓 青 美國圣母大學
講座時間:2020年09月25日(星期五)上午09:30
講座地點:線上平臺:騰訊會議,會議ID: 707 245 660
參加對象:數學與統計學院全體師生
主辦單位:研究生院
承辦單位:數學與統計學院
主講人簡介:
韓青,美國圣母大學數學系教授。美國紐約大學庫朗數學研究所博士,美國芝加哥大學博士后,曾在德國萊比錫馬普所和美國紐約大學庫朗數學研究所進行科研。獲美國Sloan Research Fellowship. 韓青教授長期致力于非線性偏微分方程和幾何分析的研究工作,在等距嵌入、Monge-Ampere方程、調和函數的零點集和奇異集、退化方程等方面做出了一系列原創性的重要研究成果。
主講內容:
Classical results assert that, under appropriate assumptions, solutions near infinity are asymptotic to linear functions for the minimal surface equation and to quadratic polynomials for the Monge-Ampere equation for dimension n at least 3, with an extra logarithmic term for n=2. We characterize remainders in the asymptotic expansions the difference between solutions and linear functions and the difference between solutions and quadratic polynomials for the Monge-Ampere equation by a single function, which is given by a solution of some elliptic equation near the origin via the Kelvin transform. Such a function is smooth in the entire neighborhood of the origin for the minimal surface equation in every dimension and for the Monge-Ampere equation in even dimension, but only C^{n-1,/alpha} for the Monge-Ampere equation in odd dimension, for any /alpha in (0,1).